Human Impacts on Hydrology and Streams

Scott Dierks, PE

Presentation Outline

- Hydrologic Cycle
- Watersheds
- Rivers
- Recurrence Interval and Flooding
- Land Cover becomes Land Use (Human modification of hydrology)
- Urban Hydrologic Cycle
- Agricultural Hydrologic Cycle
- Case Study: Recover original land cover, recover hydrology?
- River Channels: Form and Process (Fluvial Geomorphology)
- Human Impact on fluvial geomorphology

E1

The Hydrologic Cycle

Ohio's Water Balance

• P: 37.5 in/yr

• E / T: 26.0 in/yr

• 1: 3.0 - 3.6 in/yr

• R: 8.4 – 9.0 in/yr

Source:

Slide 3

these red numbers are still left over from Indiana... I can't find them for Ohio...

ESwitala, 8/22/2008

Watersheds

Watersheds are defined by natural hydrology, they represent the most logical basis for managing water resources (USEPA)

Mississippi River Watershed

Rivers

Basic terminology:

- stage -- refers to the height of a river above a locally defined reference surface
- bankfull (flood) stage ---
 - when discharge increases the channel may fill completely
 - any further increase in discharge results in water overflowing the banks

 Stream discharge is typically displayed on a hydrograph - a graph in which stream discharge is plotted against time

Ohio's Physical Setting

Human Modification of the Hydrologic Cycle

- Human modification of the landscape has altered the natural hydrologic cycle in Ohio
 - Deforestation as an initial impact (sediment loading, runoff, stream adjustment, climate change)
 - Agricultural drainage and piping (wetland loss, groundwater level modification)
 - Urbanization and residential development (continued wetland loss, increased runoff)

Deforestation

Wetland Loss from Time of European Settlement

Source - U.S. Environmental Protection Agency

Loss of Ohio Wetlands

- Wetlands were converted to agricultural land uses during most of the 20th century
- Wetlands were drained by agricultural drainage tiles
- Wetland drainage and filling continues today largely due to urban sprawl
- Restoring wetlands in headwater areas can improve water quality and enhance wildlife habitat

Agricultural Drainage System

- 75-80% of the agricultural areas are tile drained
- In these areas, riparian buffer strips are shortcircuited by tile drains

Ohio Wetland Loss

Figure 8. Location, estimated original acreage, and drainage date of Ohio's historic wetlands.

Wetland Loss from time of European Settlement

Percentage of wetland loss

Source - U.S. Environmental Protection Agency

Ohio Land Use/Cover

- Ohio is Dominated by Agricultural Land Cover
- Glaciated Landscapes (Till and Outwash) Dominant in North and Central Areas
- Southeastern Portion of State More Forested with Deeply Incised Valleys
- Geologic Setting and Land Use /Land Cover Determine Water Resources and Define Threats

Impact of Urbanization on Stream Channels

- Stream systems are dynamic
- River channels continuously adjust to variations in discharge and load by changing their shape and orientation
- Size and shape of a channel's cross-section reflect the river conditions prevailing at that point

The Urban Hydrologic System

infrastructure driven pathways

Change in Hydrology after Urbanization

Idealized Hydrographs

NRCS, 1956

Historic Land Use, Cheeney Creek Watershed 1956

Hamilton County GIS, March 2000

Increase in First Order Streams and Drainageways

Hare Creek, Ritchey Woods Nature Preserve

Impact of Agricultiural Modifications on Flow Regime

- Tile drains function much like urban storm water drains
- Effect is the same > peak flows, < base flow

Effect of Land Use Changes on Flow Regime

Fishback Creek Headwaters

Hydrograph – Eagle Creek Watershed USGS Gauge 03353200

Cumulative Impacts

Upper White River Watershed

Mean Annual Discharge of the White River South of Indianapolis

River Flooding

January 2008, Tippecanoe River near Buffalo, IN

USGS

Flatrock River at St Paul, IN

June 2008 Floods, southern Indiana

Frequency of flooding:

- Three main approaches to flood prediction
 - 1. statistical techniques
 - 2. modeling and mapping to determine extent of flooding
 - 3. monitoring the progress of a storm

Recurrence interval:

- Predictions of the frequency of flooding are based on statistical analysis of records of hydrologic events at a station
 - one value will be the <u>annual maximum</u>
 <u>discharge</u> -- highest value measured at that station in that year
 - a record of annual maxima over a period of years is called an <u>annual maximum discharge</u> <u>series or array</u>

Flood Frequency Curve

- flood discharges are often plotted with respect to the calculated recurrence interval for a flood at that magnitude at a given locality
- this type of graph is called a <u>flood frequency</u> <u>curve</u>

- flood frequency curves can be used to predict the recurrence interval for events that are greater than any historically recorded events
- the longer the available data set -- the better the prediction

Anticipated Changes of a warmer climate

Source: US Climate

Change Science Program

Increase in Probability of Extremes in a Warmer Climate

Figure 1.6 Simplified depiction of the changes in temperature and precipitation in a warming world.

Climate Change Implications

Flood Frequency Increases?

Source: US Climate Change Science Program

Projected Increases in Very Heavy Rainfall Events (Heaviest 0.3%)

Climate Model 1

Climate Model 2

Change in the number of times/yr that very heavy rainfall occurs

Costs of weather-related disasters

Figure 1.2 Costs from the SHELDUS database (Hazards and Vulnerability Research Institute, 2007) for weather and climate disasters and non-weather-related natural disasters in the U.S. The value for weather and climate damages in 2005 is off the graph at \$100.4 billion. Weather and climate related damages have been increasing since 1960.

Source: US Climate
Change Science Program

River Channel Patterns: Form and Process

- Channels classified as:
 - Straight
 - Meandering
 - Braided
- Boundaries are arbitrary and indistinct
 - For example, the distinction between straight and meandering is based on sinuosity (a ratio of stream length to valley length)

Channel Pattern is a function of:

1. Discharge

 the volume of water that passes a given location within a given period of time. Usually expressed in cubic feet per second.

2. Load

- The sediments and dissolved ions carried by the stream are the called the stream's load. Stream load is divided into three parts:
 - 1. Suspended load
 - 2. Bed load
 - 3. Dissolved load

Stream Capacity

- The maximum load of sediment a stream can carry for a given discharge.
- Stream capacity increases with increasing flow velocity.
- Increased water velocity imparts a greater frictional drag on bed to erode it.
- Turbulent flow occurs under higher velocity thus increasing the water's ability to dislodge material from the bed or sides of the stream.

Stream Competence

• The largest size material the stream can move under a given discharge.

Lane's Channel Stability Model

FISRWG, 1998; Lane, 1955

Straight Channels

- Uncommon in natural systems, where found tend to be short reaches with steep slope, or bedrock controlled
- In "straight" reaches bed material frequently has features associated with meandering channels

Rosgen

Sequence of pools and riffles in straight (a) and sinuous (b) stream channels.

Meandering Channels

- Most common river form
- Meandering rivers shift their positions across the valley bottom by eroding on the outer banks of meander bends and simultaneously depositing point bars on the inside of meander bends
- Pool and riffle sequences

Braided

- Division of a single trunk channel into a network of channels
- Development of braid bars
- Differences between divided reaches and single channels include:
 - Braided zones usually steeper and shallower
 - Total width usually greater
 - Changes in channel position can occur quickly

© Wildland Hydrology 1481 Stevens Lake Road Pagosa Springs, CO 81147 (970) 731-6100 e-mail: wildlandhydrology@pagosa.net

Strahler Stream Order

Floodplains

A floodplain is a level area near a river channel, constructed by the river in the present climate and overflowed during moderate flow events (Leopold)

Primary Processes Involved In Floodplain Formation

- Lateral migration: lateral movement of the channel across the floodplain; consists of erosion of outer bank and deposition on the point bar. Produces fining upward deposits of semi-uniform thickness.
- Vertical accretion: deposition of sediment over the top of the floodplain during flood events; Produces horizontally bedded layers with varying degrees of lateral continuity.

Lateral Accretion of Floodplain Deposits by a Meandering Channel

Vertical Accretion

Floodplains and levees:

- floodplain --
 - water that overflows a river's banks is stored on a floodplain
 - size of a floodplain is a function of the size of the river
 - boundary between a channel and its floodplain is often marked by a natural levee
 - levee is created by floods high enough to submerge the river's banks

Precipitation and infiltration:

- runoff = precipitation infiltration interception evaporation
 - during a storm flooding will occur when the ground's <u>infiltration capacity</u> is exceeded
- nature, magnitude, and likelihood of flooding will depend not only on the amount and distribution of rainfall --but also on the infiltration capacity of the ground

How rainfall distribution affects upstream and downstream flooding

- upstream flooding
 - intense, localized storms of short duration
 - short lag time
 - flooding can be severe, but is usually local in extent
 - effects of storm runoff do not usually extend to larger streams downstream
 - flash flood -- flood in which lag time is exceptionally short

downstream flooding

- caused by storms that continue for a long time and extend over an entire region
- total discharge increases downstream as a result of increased flows in tributaries
- often intensified by spring snowmelt
- 1993 Mississippi River flood

Factors affecting infiltration:

- physical characteristics of the underlying soil and rock formation
 - particle size and type
 - porosity
 - permeability
- amount and type of vegetation
- the amount of moisture in the soil

climatic factors

- soils in arid regions can develop thick highly impermeable crust primarily composed of calcium carbonate
 - duricrust
 - hardpan
 - caliche
- permanently or seasonally flooded frozen ground
- of all the factors influencing infiltration -soil moisture is probably the most important

Human impact on infiltration:

- The primary effect of development is to increase runoff by increasing the amount of impervious cover
 - roads
 - buildings
 - parking lots

Alternatives

Utilizing Natural Storage

- 80-day flood of 1993 on the Mississippi River generated 39 million acre-feet of floodwaters (at St Louis)
- conservative estimate of available flood storage in the watershed indicates that approximately 40 million acre-feet of water could be stored within the existing levees and outside the levees on existing or drained wetlands.

Illustration of the 100-Year Flood Zone Used

State	Number of Levees Flooded	Acres Flooded	Levees Repaired	Cost of Repairs
Iowa	36	35,291	6	\$275,040
Illinois	33	226,600	0	
Missouri	145	436,000	37	\$55,397,900
Total	214	697,891	43	\$55,672,900

Upper Mississippi River Basin Levee Districts Damage from the 1993 Flood (Source: U.S. Army Corps of Engineers)

Hey and others, 2004

White River at 146th Street, Hamilton County, IN February 2008

For additional information please contact:

Scott Dierks, PE
JFNew
(734)222-9690
sdierks@jfnew.com

